Using Quantile Smoothing Splines to

نویسنده

  • Steven G. Craig
چکیده

The goal of this paper is to provide a statistically based deenition of employment subcenters for multicentric urban areas. In particular, we examine the shape of the employment density function using quantile smoothing splines as a nonparametric empirical speciication. This approach allows inspection of the employment gradient at the upper tail rather than the center of the employment density distribution. As a result, our deenition of employment subcenters extends previous work as it allows us to condition on distance from the central business district, relies on the extent to which a subcenter innuences surrounding areas, yet still emphasizes areas with high employment densities. All opinions expressed are the authors' alone, and any remaining errors are ours.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric M-quantile Regression via Penalized Splines

Quantile regression investigates the conditional quantile functions of a response variables in terms of a set of covariates. Mquantile regression extends this idea by a “quantile-like” generalization of regression based on influence functions. In this work we extend it to nonparametric regression, in the sense that the M-quantile regression functions do not have to be assumed to be linear, but ...

متن کامل

The crs Package: Nonparametric Regression Splines for Continuous and Categorical Predictors

A new package crs is introduced for computing nonparametric regression (and quantile) splines in the presence of both continuous and categorical predictors. B-splines are employed in the regression model for the continuous predictors and kernel weighting is employed for the categorical predictors. We also develop a simple R interface to NOMAD, which is a mixed integer optimization solver used t...

متن کامل

On Quantile Regression in Reproducing Kernel Hilbert Spaces with the Data Sparsity Constraint

For spline regressions, it is well known that the choice of knots is crucial for the performance of the estimator. As a general learning framework covering the smoothing splines, learning in a Reproducing Kernel Hilbert Space (RKHS) has a similar issue. However, the selection of training data points for kernel functions in the RKHS representation has not been carefully studied in the literature...

متن کامل

Additive models for quantile regression: Model selection and confidence bandaids

Additive models for conditional quantile functions provide an attractive framework for nonparametric regression applications focused on features of the response beyond its central tendency. Total variation roughness penalities can be used to control the smoothness of the additive components much as squared Sobelev penalties are used for classical L2 smoothing splines. We describe a general appr...

متن کامل

Smoothness selection for penalized quantile regression splines.

Modern data-rich analyses may call for fitting a large number of nonparametric quantile regressions. For example, growth charts may be constructed for each of a collection of variables, to identify those for which individuals with a disorder tend to fall in the tails of their age-specific distribution; such variables might serve as developmental biomarkers. When such a large set of analyses a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007